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Utilizing the superposition method, an analytical type solution is obtained for the free
vibration eigenvalues and mode shapes of a cantilever plate with step discontinuities in plate
properties. Property discontinuity lines run parallel to the clamped edge of the plate.
Veri"cation tests are performed for limiting cases by comparing computed eigenvalues with
known eigenvalues for plates with uniform properties. Very good agreement is also obtained
when computed results are compared with those obtained experimentally utilizing a test
plate with discontinuities in thickness. Computed eigenvalues and mode shapes are
presented for the bene"t of other researchers. Besides the general interest, the problem has
an application in the modelling of certain multi-story buildings during seismic studies.
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1. INTRODUCTION

An interest in free vibration analysis of rectangular cantilever plates with step
discontinuities in properties has risen in connection with determining the seismic response
of certain families of high-rise buildings. It is found that long, narrow, multi-story o$ce or
apartment buildings can be modelled, at least initially, by vertical cantilever plates the lower
edge being "xed and corresponding to the base of the structure.

Buildings of this type, in general, have a diminishing e!ective transverse sti!ness, as one
moves upward, and possibly changes in mass associated with each story. In order to model
these changes in the properties of actual structures, the cantilever plate is assigned
corresponding e!ective values of #exural sti!ness and mass distribution for the various
building stories being modelled. This leads to the step discontinuities in properties (sti!ness
and mass distribution) as one moves along the plate.

A considerable interest in the vibration of stepped circular plates has existed over the years in
connection with their use as ultrasonic radiators. Most of the progress in this area was reviewed
by San Emeterio et al. [1] in the 1987 paper. Progress in the study of stepped rectangular
plates, or plates with discontinuities in properties, has advanced at a much slower rate.

Harik et al. [2] have made a study of rectangular plates with intermediate #exible
supports utilizing the analytical strip method. They have pointed out that their approach
can be utilized to solve a limited class of problems involving rectangular plates with
022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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discontinuities in thickness. Computed results are presented for the fundamental frequency
of a simply supported plate with a single-step discontinuity in thickness. These results are
compared with what are usually approximate results obtained by earlier researchers. Again,
a fairly complete listing of earlier research work in this area is reported.

A signi"cant paper by Jinkyo and Bergman was published in 1993 [3]. They begin by
pointing out that &&there are few publications available on the vibration of plates with
non-uniform thickness''. Nevertheless, they also have a fairly comprehensive review of
pertinent literature available up to that time, observing also that most previous work was
approximate in nature. Their work was devoted to stepped plates; however, it was strictly
limited to plates with at least two opposite simply supported edge. It is known that Levy
type solutions can be obtained for this very limited class of problems.

In a follow-up paper, Lee and Bergman described a more general dynamic #exibility
method for analyzing the forced and free vibrations of both beams and plates with stepped
discontinuities [4]. Again, their plate computations were restricted to cases of plates with at
least one pair of opposite edges simply supported. A valuable contribution of this paper was
the listing of 44 related references.

Liu and Liew [5] have published a fairly recent paper dealing with the vibration of
discontinuous Mindlin plates. They utilized a modi"ed version of a numerical procedure
known as the &&di!erential quadrature element method''. Their work is mainly relevant here
in that it contains a literature review extending from 1963 to 1998.

In this paper, an accurate analytical type solution is obtained for the free vibration
frequencies and mode shapes of cantilever plates of the type described above. Following the
established procedures, each uniform segment of the plate is analyzed by means of a set of
building blocks (forced vibration solutions). Driving coe$cients associated with these
building blocks are constrained in such a way that all boundary conditions related to the
segment as well as conditions of continuity with neighboring segments are satis"ed. While
the present investigation pertains to cantilever plates, it becomes obvious to the reader that
with the superposition of appropriate Levy type solutions (building blocks), the analysis is
applicable to plates with any combination of classical boundary conditions. Furthermore,
lines of discontinuity may run perpendicular to any pair of opposite edges.

It is also pointed out that the present paper is quite general in that it handles plates with
stepped discontinuities in sti!ness and mass distribution properties. Plates with
discontinuities in thickness constitute only one family of problems which can be handled. It
is of no consequence in the present analysis as to how these discontinuities come about.
They could be the result of joining plates of identical thickness but di!erent sti!nesses or
mass distributions. Such plates could be the result of joining plates of dissimilar metals etc.
Also, plates partially covered with uniformly distributed masses can be readily handled.
Any degree of accuracy can be achieved in the analysis by increasing the number of terms
utilized in the building block solutions. This is also, to the knowledge of the authors, the
"rst paper on the subject to include experimental results.

The objectives set forth here are to familiarize the reader with the method of analysis and
to present results of a limited number of illustrative as well as experimental studies.

2. ANALYTICAL PROCEDURE

2.1. DEVELOPMENT OF THE BASIC BUILDING BLOCK SOLUTIONS

Before presenting the over-all arrangement of the building blocks to be deployed in
resolving the problem of ultimate interest, it is advantageous to review solutions for the
basic building blocks utilized in the analysis.



Figure 1. Schematic representation of building blocks utilized in plate analysis.
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Consider the "rst building block, represented schematically in Figure 1, and designated
by the symbol (a). Co-ordinates � and � represent the distances along the x and y directions
divided by edge lengths a and b respectively. Small open circles adjacent to an edge indicate
slip}shear boundary conditions, i.e., vertical edge reaction, and slope taken normal to the
edge, are zero everywhere. The edge, �"1, is free of vertical edge reaction and is driven by
a distributed, forced harmonic edge rotation of circular frequency �.

It is known that a Levy type solution can be written for the spatial response of this
building block. It is written as

=
�
(�, �)"

�
�

�����

>
�
(�) cosm��, (1)

where=
�
(�, �) equals the dimensionless lateral displacement w/a.

The di!erential equation governing vibratory behavior of thin rectangular plates in
dimensionless form is expressed as [6]
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and for ��((m�)�,
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where ��
�
"��	��#(m�)�
, ��

�
"��	��!(m�)�
 or ��	(m�)�!��
, whichever is positive.

A
�
, B

�
, etc., are constants to be determined. � denotes the building block aspect ratio b/a,

and ��"�a���/D, the dimensionless driving frequency. Here, � denotes the mass per unit
area and D the #exural rigidity of the building block.

The unknown spacial distribution of the imposed edge rotation is expressed in series
form as

�=(�, �)
�� ����

"

�
�

���

E
�
cosm��. (5)

We wish to express the building block response in terms of the above Fourier driving
coe$cients, E

�
.

It is immediately obvious that, due to the boundary conditions imposed along the edge,
�"0, all antisymmetric terms in equations (3) and (4) must vanish. This eliminates two
unknown coe$cients in each equation. Next, enforcing the condition of zero vertical edge
reaction along the driven edge, we obtain the relationship [6]
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Substituting equation (1) into equation (6), it follows that we may write
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where the superscripts indicate di!erentiation with respect to �.
Substituting equations (3) and (4) (with second and fourth terms deleted) into equation
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Finally, enforcing the boundary condition expressed by equation (5), and employing
equations (1), (8), and (9), we obtain:
for ��'(m�)�,
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and for ��((m�)�,
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It is important to note that with equations (10) and (11), we have made available the exact
solution for the building block response to any harmonic edge rotation excitation.

We now wish to examine the building block (b) of Figure 1. It will be obvious that the
solution for this building block may be extracted from that of building block (a) through
a proper interchange of axes. We must, however, make certain additional observations. Not
only must the variables � and �, related to the "rst solution, be interchanged but the aspect
ratio � must be replaced by its inverse 1)0/�, where �"b/a. Two further observations are
important. Since the parameter �� was based on edge length a, it must now be replaced by
the product �� �� so that it is based on edge length b in the new formulation. Finally, it is
important to note that the lateral displacement in the solution for building block (b) will be
non-dimensionalized by edge length b. In summary, the solution for building block (b) is
written as
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Note that the subscript n is used here for all the solutions where the analytical functions
run in the x direction and = (�, �) (equation (12)), for such solutions represents lateral
displacement divided by edge length b.

The third building block in Figure 1 di!ers from the second in two ways only. Firstly, its
edge, �"1, has a condition of zero slope taken normal to the edge, enforced along its driven
boundary. This condition is indicated by two solid dots joined across the edge. Secondly,



Figure 2. Schematic representation of intermediate building block.
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the same edge is driven by a distributed, forced harmonic vertical edge reaction, also of
circular frequency �.

It is advantageous in seeking a solution for this building block to begin by obtaining
a solution for the building block depicted in Figure 2.

Response for this latter building block is obtained in a fashion exactly analogous to that
followed in obtaining the solution for the "rst building block of Figure 1. The procedure will
not be repeated here. The displacement= (�, �) and the functions>

�
(�) again take the form

of equations (1), (3), and (4) respectively. Distribution of amplitude of the harmonic vertical
edge reaction is represented in the same series as utilized in equation (5). Solutions for the
functions >

�
(�) are expressed as:
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and where the single prime superscript is employed to avoid confusion with respect to the
"rst building block. Quantities �

�
and �

�
are, of course, as de"ned for the "rst building

block of Figure 1.
A solution for building block (c) of Figure 1 is extracted from that given immediately

above through a transformation of axes. It will take a form identical to that given by
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equations (12)} (14). For this later solution, we "nd that
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where primes indicate equations pertaining to building blocks driven by harmonic vertical
edge reactions.

In order to prepare for what is to follow, it is of utmost importance, at this time, to review
the dimensionless formulation of bending moments and vertical edge reactions as they
apply to the above building blocks. It was demonstrated in reference [6] that these
quantities may be expressed as follows:
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withM and < being the actual moments and vertical edge reactions, and subscript � refers
to the � direction.

Similarly, for the � direction, we have:
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We should also recall at this time the de"nition of �� and the fact that here the lateral
displacement is non-dimensionalized through division by edge length a.



Figure 3. Schematic representation of intermediate building blocks and building block of ultimate interest.
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In what follows, it will be important to note that equations (17)} (20) relating the bending
moments and vertical edge reactions to lateral displacement will also be valid for response
solutions with analytical functions running in the � direction, as described immediately
above, provided we multiply the right-hand sides by the quantity b/a. This is necessary as
the lateral displacement for these latter solutions is divided by edge length b.

The building block solutions (a)} (c) of Figure 1 above are the only ones required for the
entire plate analysis, with the exception of the "rst plate segment beginning at the clamped
edge. In order to satisfy the clamped edge conditions, four other building block solutions
are required. They are represented schematically in Figure 1 and are denoted by the letters
(d)}(g). Extended lines along the edges, �"0)0, indicate simple or hinged support.

Focusing "rst on building block (d), it is found that it is easiest to generate the required
solution by proceeding as follows.

We begin by generating the solution for the response of the "rst building block of Figure
3. It is driven by a distributed harmonic edge rotation and its solution di!ers from that of
building block (a) of Figure 1 only in that a condition of zero lateral displacement, rather
than zero vertical edge reaction is enforced along the driven edge. The reader will have no
trouble generating this solution. Immediately afterward, one can extract the solution for the
second building block of Figure 3 from the "rst following the transformation rules discussed
earlier. In fact, except for the quantities �

��
and �

��
, the solution will be identical to that

given by equations (12)} (14). The quantities �
��

and �
��

become

�
��

"!cosh�
�
/cos �

�
, �

��
"!cosh�

�
/cosh �

�
.

Finally, the solution for the third building block of Figure 3, which is identical to the
fourth building block (d) of Figure 1, is extracted from the solution presented immediately
above by simply replacing the quantity � of the above solution with the quantity 1!�. In
view of sign conventions, one must precede this solution with a negative sign.

Building block (e) of Figure 1 di!ers from (a) only in that now the edge, �"0)0, is given as
simple support instead of slip}shear support. A Levy type solution for this latter problem is
written as

=(�, �)"
�
�

�����

>
�
(�) sin (2m!1)��/2. (21)

The quantities >
�
(�) are immediately extracted from those derived for building block (a)

of Figure 1 by simply replacing the quantity m� of the earlier solution with the quantity
(2m!1)�/2.



Figure 4. Schematic representation of additional intermediate building blocks.
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In order to obtain the solution (f ) of Figure 1, it is wise to begin by obtaining the solution
for the "rst building block of Figure 4. This building block di!ers from the "rst of Figure
1 only in that a simple support, rather than a slip}shear condition, is imposed along the
edge, �"0. The solution will take the form of equation (1); however, we must now delete the
symmetric terms rather than the antisymmetric terms of equations (3) and (4). Following
steps analogous to those described in detail for the earlier building block, it is found that
quantities �

�
and �

�
are unchanged; however, the quantities >

�
(�) now become:
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The solution for the response of building block (f ) is, of course, extracted from the
solution immediately above through a transformation of axes as already discussed.

A solution for building block (g) of Figure 1 is obtained in an analogous fashion. One
begins with the second building block of Figure 4. It di!ers from the building block of
Figure 2 only in that simple support is enforced at the edge, �"0. Again, the solution will
take the form of equation (1) with the functions >

�
(�) as expressed by equations (22) and

(23).
The quantities �
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and
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.

Finally, the above solution must be given a transformation of axes to provide the solution
for the response of building block (g).

The required building block solutions are now available for the analysis of the entire
cantilever plate with discontinuities in properties.

2.2. GENERATION OF THE EIGENVALUE MATRIX

We choose here, for illustrative purposes, to describe the generation of the eigenvalue
matrix for a cantilever plate with two discontinuities in properties. This implies that the
plate is composed of three distinct segments. It will be seen that the analytical procedure is
valid regardless of the number of discontinuities in plate properties.

We wish to keep the approach general by permitting the dimension a of the individual
plate segments to take on any desired value. It is convenient in any study, therefore, to
express the reference value for the dimensionless frequency as ��

�
, where the frequency is

non-dimensionalized through the use of the edge length b. While length amay change from
span to span, length b remains constant.

We also accept that each segment may have di!erent values for e!ective mass per unit
area and plate #exural rigidity. The practice followed there is to base the reference quantity,
��
�
, on the mass per unit area, and #exural rigidity, of the "rst segment of the plate i.e., the

segment bounded by the clamped edge.
It follows, therefore, that for any segment, let us say segment i, the associated quantity

��
�
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��
�
"	��

�
/��

�

R

�
, R

�
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�
�
/D

�
�
�
/D

�

. (24, 25)

Here, the subscript 1 refers to the "rst segment, and � and D are the mass per unit area,
and #exural rigidity, respectively, of the segment to which the subscript i refers. On moving
to each new segment, equation (24) is utilized to establish the related value of ��

�
.

In order to conduct a free vibration analysis of a cantilever plate of three distinct
segments, a sequence of building blocks as depicted along the top of Figure 5 is required.
The digit appearing inside each building block outline indicates the plate segment to which
it pertains. We denote the number of terms utilized in the series solution of each building
block byK. Figure 5 is a schematic representation of the eigenvalue matrix, where the value
of K has been arbitrarily set equal to 3. The unknown driving coe$cients associated with
the various building blocks, e.g., E

��
(i), i"1, 2, 3, E

��
(i), i"1, 2, 3, etc., are listed

immediately beneath the building blocks of the "gure. This practice has been followed in
numerous publications employing the superposition method.

It will be noted that while there are 16 building blocks in the "gure, there are only 12 sets
of driving coe$cients. This is because four adjacent pairs of building blocks form &&coupled
pairs''. It will be shown that driving coe$cients associated with the building blocks of each
pair are not independent but di!er by a "xed multiplying factor.

Since we have 12 sets of driving coe$cients to constrain, we must also have 12 sets of
boundary conditions, or inter-plate segment continuity conditions, to enforce. These



Figure 5. Schematic representation of eigenvalue matrix for analyzing cantilever plate of three distinct segments (K"3). Heavier bars indicate matrix elements associated
with the intermediate plate segment.
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boundary/continuity conditions are represented schematically by insets along the
right-hand side of the "gure. Numbers along the top of these insets indicate the plate
segment to which reference is made. The "rst inset indicates, for example, that a condition of
zero slope along the clamped edge of the "rst plate segment must be satis"ed. The second
and third insets indicate edges along which a condition of zero bending moment must be
enforced. The fourth inset indicates that a condition of continuity of bending moment along
the interface of the "rst and second plate segments must be enforced, etc.

Well-established practices are followed in generating the eigenvalue matrix for problems
undergoing analysis by means of the superposition method. In the present problem, we
must develop a set of 12K homogeneous algebraic equations relating the 12K unknown
driving coe$cients. The eigenvalue matrix consists of the coe$cient matrix for this set of
equations.

For illustrative purposes, we will begin by examining the "rst row of matrix segments of
Figure 5 which arise from imposing the condition of zero slope along the plate clamped
edge. It is agreed that only building blocks of the "rst plate segment contribute toward this
slope. Furthermore, solutions for the response of each of these "ve building blocks exist.
Solutions for the "rst, fourth, and "fth building blocks are those of the building blocks
depicted in Figure 1(d), 1(f ), and 1(g). The solution for the second building block is available
from that of Figure 1(e). The solution for the third building block is also available from that
of Figure 1(e) in replacing the quantity � with (1!�).

Standard procedures are employed to enforce the prescribed boundary conditions. The
contributions of all the building blocks toward the slope along the edge, �"0)0, of the "rst
plate segment are expanded in an appropriate trigonometric series and the net coe$cient of
each term in the new series is set equal to zero. This gives rise to a set of K homogeneous
algebraic equations relating the driving coe$cients E

��
, E

��
, etc. It is found advantageous

here to choose the cosine series of equation (1) for the expansion, since contributions to the
slope of three of the building blocks already exist in terms of this series. Short bars in the
"rst row of matrix segments indicate the coe$cients in the set of equations thus obtained.

Two points should be made clear at this time. Firstly, we wish to express the slope as
�=(�, �)/��, where �"0)0,=(�, �) equals lateral displacement divided by segment width a.
Since displacement for the "rst, fourth, and "fth building blocks of the "rst plate segment is
non-dimensionalized through division by edge length b, each contribution toward the slope
of these building blocks must be multiplied by the plate segment aspect ratio �

�
in order to

preserve consistency.
Secondly, it will be noted that matrix elements appearing in the "rst row of segments

immediately beneath the coupled building blocks (discussed earlier) lie along, but to the left
of, a diagonal line drawn through the segment. This is to indicate that these diagonal
elements pertain to the left building block of the coupled pair. When such diagonal elements
pertain to the right building block of the coupled pair, they will appear to the right of the
diagonal line.

Moving down to the second row of segments of the matrix (Figure 5), it is seen that we
must now expand the contributions of building blocks toward bending moment along the
edge, �"1, of the "rst plate segment in an appropriate series. Here, it is advantageous to
utilize the sine series of equation (21) as contributions of two of the building blocks are
available in the form of this series. The required bending moment is, of course,
obtained from equation (17). It is pointed out again that when applying this equation to
building block solutions with lateral displacement non-dimensionalized through
edge length b, the results must be multiplied by the aspect ratio of the plate segment
involved. An identical procedure permits the generation of matrix elements of the third row
of segments.
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The fourth row of segments arises because of the need to enforce the condition of
continuity of bending moment at the interface of the "rst and second plate segments. All
building blocks of the "rst and second plate segments will contribute toward the moment at
the interface. The practice here is to enter moment contributions toward the left-hand side
of the interface as positive and those contributing to the right-hand side as negative, thus
keeping the constraining equations in regular homogeneous form.

Before discussing matrix elements associated with this continuity condition further, it is
appropriate to discuss the driving coe$cients associated with the "rst two coupled pairs of
building blocks in the set. We begin by focusing on the "rst pair. Each building block is
driven by a harmonic edge rotation.

In the interest of generality, we will denote the successive building blocks in each coupled
pair by the subscripts i and j respectively. Since the two building blocks in the pair under
consideration are the only ones that can contribute toward slope at their interface, actual
slopes must be equal at this location. We denote the "rst driving coe$cient as E

�
and the

second as E*
�
.

For building blocks i and j, actual slopes at the interface become, respectively,

�=(�, �)
�� ����

b/a
�
"E

�
b/a

�
(26)

and

�=(�, �)
�� ����	�

b/a
�
"!E*

�
b/a

�
. (27)

At any such interface, we may therefore write

E*
�
"E

�
	!�

�
/�

�

. (28)

All the matrix elements related to the second building block of coupled pairs of this type
must be pre-multiplied by the factor on the right-hand side of the above equation.

We turn next to the "rst transverse force-driven pair of coupled building blocks. This time
it is recognized that the actual transverse shear forces must be continuous across the
interface of the pair. Again, employing the subscripts i and j, we write

<a�
�

bD
�
����

"E
�

(29)

and

<a�
�

bD
�
����	�

"!E*
�
, (30)

where the subscript n has again been utilized to indicate the driving coe$cient. The
quantities on the left-hand side of the equations (29) and (30) represent non-dimensional
vertical edge reaction after the transformation of the solution of Figure 2 (equation (18)).

It follows immediately that we may write

E*
�
"E

�
	!(D

�
/D

�
)[�

�
/�

�
]�
. (31)

Here, of course, D
�
and D

�
are the #exural rigidities of the respective plate segments.



644 D. J. GORMAN AND R. SINGHAL
Again, all matrix elements related to the second building block of the pair must be
pre-multiplied by the factor on the right-hand side of equation (31).

Returning now to the fourth row of matrix segments, it is found appropriate to expand all
building block contributions toward bending moment at the interface of the "rst and
second plate segments in a cosine series. Bending moments are obtained for each building
block according to equation (19), and we recall that all the expansions developed for
building blocks with analytical functions running in the � direction must be multiplied by
the aspect ratio of the plate segment involved. All contributions to the left-hand side of the
interface are entered as positive.

The same practice is followed in entering contributions to the right-hand side of the
interface, except that these must be entered as negative. One other consideration is
important. Again, denoting successive plate segments, beginning at the left-hand side of the
interface, by the subscripts i and j, respectively, it is seen that for the left-hand side of the
interface, equation (19) provides the quantityMa

�
/D

�
. While, for the right-hand side, it gives

the quantityMa
�
/D

�
. Since we wish to enforce the continuity of actual moment,M, we must

multiply matrix elements to the right-hand side of the interface by the quantity �
�
D

�
/�lD�

.
The "fth row of matrix segments arises because of the need to enforce a condition of

continuity of plate lateral displacement across the above interface. All the lateral
displacements must be non-dimensionalized throughout the row of segments by the same
length. Here it has been found convenient to non-dimensionalize all the displacements
through division by edge length b. Since displacements for solutions with analytical
solutions running in the � direction are already non-dimensionalized in this manner, no
multiplication factor is required. Displacements obtained from the other solutions, for any
segment i, must be divided by the quantity �

�
.

The remainder of the matrix is generated following the procedures already described. The
only exception relates to the "nal row of matrix segments where a condition of zero
net-bending moment along the plate outer edge must be enforced.

It will be noted in Figure 5 that matrix elements related to the second, or central, plate
segment are designated by heavier bars. This is done for the convenience of the reader. It
will be recognized that with a cantilever plate of four distinct spans, for example, this central
portion of the matrix associated with the second plate segment will have to be augmented
with a similar section downward and to the right and associated with the third plate
segment. The "nal portion of the matrix will then be associated with the fourth and "nal
plate segment.

It is important to point out here that once a computer routine has been written for the
three-segment plate, it is easy to index the routine so that it can handle plates of any number
of segments. This has in fact been done. With four distinct plate segments, the associated
matrix will comprise an array of segments, 16�16, instead of the 12�12 array associated
with the three-segment plate.

3. PRESENTATION OF COMPONENT RESULTS

Fortunately, a number of convincing tests can be performed in order to verify the
theoretical model described and the computer routine utilized to generate the eigenvalue
matrix and establish the eigenvalues.

All eigenvalues are computed by following well-established procedures. With all the
parameters of the problem selected, a trial eigenvalue, ��

�
, is also selected and the associated

matrix is generated. The determinant of the matrix is computed, the trial eigenvalue is
augmented, and the process repeated. Eigenvalues are those values of the parameter, ��

�
,



Figure 6. Computed eigenvalue versus parameter K for square cantilever plate of three equal segments, with
identical properties. Broken line indicates known eigenvalue for classical square cantilever plate.
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which cause the determinant of the matrix to vanish. Mode shapes are obtained by setting
one of the non-zero driving coe$cients equal to unity and solving the resulting set of
non-homogeneous algebraic equations relating to the remaining driving coe$cients. With
all the coe$cients established, the plate mode shape associated with the eigenvalue is
generated.

As a "rst veri"cation test, a square cantilever plate was examined. It is known that the
eigenvalue for this problem, with uniform properties throughout, is "3)459. The same plate
was examined using the present analytical approach. It was considered to be composed of
three equal segments; however, for this test the properties of all the segments were treated as
being equal, thus an eigenvalue of 3)459 was to be anticipated.

Results of the study are presented in Figure 6. It is seen that the computed eigenvalue for
the three-segment plate converges rapidly to the known limiting value. With 12 terms
utilized in the building block solution series, there is an agreement to four signi"cant digits.
Similar tests were conducted with the plate divided into four equal segments for both square
and non-square plates. Good convergence to known eigenvalues was obtained.

In a further test, similar to that described above for the square plate, the "rst and second
plate segments, moving out from the clamped edge, were allowed to take on di!erent aspect
ratios, the new aspect ratios thus speci"ed, however, that the overall plate was still square.
One therefore anticipated no change in computed eigenvalue, regardless of the pairs of
aspect ratios assigned to the "rst and second plate segments, within the above constraints.
This, in fact, was found to be the case.

It will be appreciated that no comprehensive set of eigenvalues could be prepared to
cover the range of plate geometries and property discontinuities which might be
encountered in problems of the type considered here. The best that can be done is to present
computed results of a limited scope which will provide other researchers and designers with
data against which their computed results can be compared.

Toward this end, we "rst present the results of a study of a square cantilever plate
composed of three segments of equal geometry but of di!erent structural properties. A plate
with two-step discontinuities in thickness has been selected for this purpose. An edge view of
a plate of this type is shown schematically in Figure 7.

While only the ratio of plate segment thicknesses to that of the "rst segment is required, it
was decided, for convenience, to assign actual thicknesses to each segment. These
thicknesses are seen to be 1/2 in (1)270 cm), 3/8 in (0)9525 cm), and 1/4 in (0)6350 cm) as we
move out from the clamped edge.

It will be recalled that the mass per unit area of each segment is proportional to the
segment thickness, h. Furthermore, #exural rigidity of each segment is proportional to h�.



Figure 7. Edge view of a square cantilever plate of three segments of equal width but di!erent thicknesses (not
to scale).

TABLE 1

Eigenvalues computed for a square plate with two step discontinuities in thickness
(��

�
"�b���/D

�
)

Mode Eigenvalue ��
�

Type

1 4)132 Sym
2 7)597 Antisym
3 16)51 Sym
4 18)76 Sym

TABLE 2

Eigenvalues computed for plate of aspect ratio 3/4 with three discontinuities in thickness
(��

�
"�b���/D

�
)

Mode Eigenvalue ��
�

Type

(1) 2)572 Sym
(2) 4)877 Antisym
(3) 7)734 Sym
(4) 10)72 Antisym
(5) 11)14 Sym
(6) 17)58 Sym
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The mass per unit area ratios of the second and third segments then become �
�
/�

�
"3/4

and �
�
/�

�
"1/2. Corresponding ratios for #exural sti!ness of the segments become

D
�
/D

�
"27/64 and D

�
/D

�
"1/8. The aspect ratio for each plate segment becomes 3)0.

The computed eigenvalues, ��
�
, for the "rst four free vibrationmodes of this plate with two

discontinuities in thickness are tabulated in Table 1. All modes must be symmetric, or
antisymmetric, with respect to the plate center line running normal to the clamped edge.
The type of mode associated with each eigenvalue is indicated on the right-hand side of the
table.

The "rst six eigenvalues and mode shapes were computed for another plate of interest.
This second plate had a clamped edge length of 12 in (30)48 cm), the other edge being 16 in
(40)64 cm) in length, and the overall aspect ratio being equal to 3/4. It was divided into four
segments of equal width (4 in), the "rst three segments having thicknesses identical to those
given in Figure 7. The "nal outward segment had a thickness of 1/8 in (0)3175 cm).
Computed eigenvalues for this plate are presented in Table 2. The type of mode (symmetric
or antisymmetric) is also indicated.

Computed mode shapes for this four-segment plate are found in Figures 8}13.



Figure 8. Computed "rst mode shape (plate of Table 2).

Figure 9. Computed second mode shape (plate of Table 2).

CANTILEVER PLATES WITH DISCONTINUITIES 647



Figure 10. Computed third mode shape (plate of Table 2).

Figure 11. Computed fourth mode shape (plate of Table 2).
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Figure 12. Computed "fth mode shape (plate of Table 2).

Figure 13. Computed sixth mode shape (plate of Table 2).
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Figure 14. View of experimental test plate mounted on shaker test facility.

TABLE 3

Comparison between theoretical and experimentally measured free vibration frequencies for
test plate with three step discontinuities in thickness

Theoretical Experimental
Mode Type frequency (Hz) frequency (Hz)

1 Sym 85)80 86)7
2 Antisym 167)0 166)0
3 Sym 278)2 269)0
4 Antisym 385)4 374)0
5 Sym 399)6 393)7
6 Sym 633)2 611)2
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An experimental study of the free vibration behavior of a rectangular aluminum test plate
with geometry and discontinuities identical to those described for the plate immediately
above was carried out. The objective was to provide experimental results against which
computed frequencies could be compared.

The test plate was machined from T6061 aluminum. It was mounted on an MB C-150
shaker by means of a special "xture. A view of this plate mounted on the shaker facility is to
be found in Figure 14. During tests, a low level (0)5g) sine sweep at the sweep rate of 0)5
octaves/min was performed for the frequency bandwidth of 20}700Hz.

To calculate eigenvalues and frequencies, the actual plate dimensions (segment widths and
thicknesses, etc.) were used. These varied only slightly from the nominal dimensions
given above. Fifteen terms were utilized for building block solutions in the theoretical analysis.

Measured and computed frequencies for the "rst six free vibration modes of this plate are
presented in Table 3. It will be noted that the computed and experimentally measured
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frequencies agree to within 3)5% or less. This is considered to be a very good agreement for
studies of this type. It is known that it is di$cult to achieve idealized clamping conditions
along the "xed edge of the plate. It will also be noted that for almost all the modes, the
theoretical frequencies are slightly higher than those measured experimentally. This is to be
expected in view of the di$culty in achieving idealized clamping conditions.

4. DISCUSSION AND CONCLUSIONS

The superposition method is found highly suitable for obtaining analytical type solutions
for the free vibration of cantilever plates with step discontinuities in plate properties.
A number of veri"cation tests have been performed through maintaining the multi-plate
segment solution and letting plate properties take on uniform values throughout. Excellent
agreement with known eigenvalues was obtained. These tests were followed by comparisons
made between computed frequencies and those obtained experimentally. Agreement
achieved in these latter tests can be described as very good. Tabulated eigenvalues provide
other researchers with results against which they may compare their "ndings.

The reader will now appreciate, as pointed out earlier, that with the proper choice of
building blocks, plates with any combinations of classical boundary conditions can be
analyzed. It is also perhaps worth noting that some analysts might prefer to generate all
segments of the eigenvalue matrix, beyond the segment related to the "rst plate span, as
intermediate segments. It would then only be necessary to post-modify the segment related
to the "nal span such that outer boundary conditions are satis"ed.

The objective of obtaining an accurate analytical type solution for the problem under
consideration has been achieved.

ACKNOWLEDGMENTS

Experimental work was carried out at the David Florida Laboratory of the Canadian
Space Agency in Ottawa. The authors would like to acknowledge the valuable assistance of
Tony Russiello in carrying out the experimental tests.

REFERENCES

1. J. L. SANEMETERIO, J. A. GALLEGO-JUREZ and G. RODRIGUEZ-CORRAL 1987 Journal of Sound and
<ibration 114, 495}505. High axisymmetric modes of vibration of stepped circular plates.

2. I. E. HARIK, X. LIU and N. BALAKRISHNAN 1992 Journal of Sound and <ibration 153, 51}62.
Analytical solution to free vibration of rectangular plates.

3. L. JINKYO and L. A. BERGMAN 1993 <ibration and Control of Mechanical Systems, American
Society of Mechanical EngineersDE-61, 243}256. Free and forced vibration of stepped levy plates.

4. J. LEE and L. A. BERGMAN 1944 Journal of Sound and <ibration 171, 617}640. The vibration of
stepped beams and rectangular plates by an elemental dynamic #exibility method.

5. F. L. LIU andK.M. LIEW Journal of<ibration and Acoustics2¹ransactions of the American Society
of Mechanical Engineers 121, 204}208. Vibration analysis of discontinuous Mindlin plates by
di!erential quadrature element method.

6. D. J. GORMAN 1982 Free <ibration Analysis of Rectangular Plates. New York: Elsevier,
North-Holland Co.

APPENDIX A: NOMENCLATURE

a building block edge dimension
a
�

edge dimension of plate segment i
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b plate dimension along clamped edge
D #exural rigidity of plate segment
D

�
#exural rigidity of plate segment i

E modulus of elasticity of plate material
h plate thickness
h
�

thickness of plate segment i
K no. of terms utilized in building block solutions
w plate lateral displacement
= dimensionless plate lateral displacement
x, y distances along plate edges
� the Poisson ratio of plate material
�* ("2!�)
� ("x/a, or x/a

�
)

� ("y/b)
� circular frequency of vibration
�
�

mass per unit area of segment i
� mass per unit area of segment adjacent to clamped edge
�� ("�a�

�
��/D

�
) dimensionless frequency

��
�

eigenvalue"�b���/D
�
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